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lonization fronts in planar dc discharge systems with high-ohmic electrode
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Electric breakdown and ionization fronts are considered theoretically in a sandwichlike dc discharge system
consisting of two plane-parallel electrodes and a gaseous gap in between. The key system feature is a high-
ohmic cathode opposite to an ordinary metal anode. Such systems have received much attention from experi-
mental studies because they naturally support current patterns. Using adiabatic description of electrons and
two-scale expansion we demonstrate that in the low-current Townsend mode the discharge is governed by a
two-component reaction-diffusion system. The latter provides quantitative system description on the macro-
scopic time scaléi.e., much larger than the ion travel tim&he breakdown appears as an instability of the
uniform overvoltage state. A seed current fluctuation triggers a shocklike ionization front that propagates along
the discharge plane with constant spégically ~10* cm/9. Depending on the cathode resistivity the front
exhibits either monotonic or oscillatory behavior in space. Other breakdown features, such as damping tran-
sient oscillations of the global current, can also be found as solutions of the reaction-diffusion equations.
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I. INTRODUCTION The geometry of the discharge cell in question is shown in

Self-organized lighting current patterns like striations inFi9- 1. The gas layer is located parallel to theplane and
long discharge tubes or current spots in laterally extende§xtends fromz=0 to z=d in z direction. The current is es-
systems are complicated in nature though relatively easy tgentially parallel toz axis. The cathode consists of a high-
generatd 1]. Despite the good knowledge of the underlaying©hmic barrier located at<z<d+d,. Two planar metal con-
microscopic processes, the observed macroscopic pattert@cts are located a=0 (anodg¢ andz=d+d.. Bothd andd
(e.g., anode spotsare not understood to large extent. Oneare considerably smaller than the radius of the discharge cell.
reason is that typically the current patterns are threeConsequently, the& andy dependence of the electric poten-
dimensional(3D) objects that evolve on a time scale of atial and particle densities is assumed to be weak compared
millisecond or longer. In contrast, the smallest time scale thawith the z dependence. Nevertheless, the radial dependence
should be taken into account, e.g., in the popular drift-cannot be ignored completely, as it is responsible for laterally
diffusion approximation, is the electron travel time that is of extended pattern we are interested in. Two-scale approach
order of 10 nanoseconds for the systems in question. A diregill then be used in what follow§17,18.
numerical solution of the plasma transport equations is there- \we now consider the development of electric breakdown
fore very time consuming or even impossible. The alternajn Townsend mode, and look for peculiarities resulting from

tive is to develop an apprqpriate reduced discharge modgl. lthe high-ohmic barrier. Let us assume that by proper choice
what follows we solve this problem for the Townsend dis-

Charge. bE -b.E

A concrete experimental system that we have in mind is = <—=0
the planar dc discharge system in which one metal electrode Sep . ° .
is separated from the gas by a high-ohmic barrier, as first Co i* 5 Je
suggested in Ref$2—4]. In this case the electric potential is e o °®
not necessarily constant along the interface of the high ohmic pt . + 2
barrier and the gas layer. The position dependence of poten-
tial of the gas-electrode interface supports a nonuniform dis- g E - Evr
charge distribution, e.g., current spots or current filaments. o *° %

The discharge in systems with high ohmic barrier is simi- ﬁi * L ls‘li §
lar to a dielectric barrier discharge, as it is greatly affected by sI° ° . s S

surface charg€lb] and often supports numerous current fila- ; ’ P
ments instead of a single cathode spot. At the same time it is
a dc _d|scharge where the_ cur_rent flows exclusively in one FIG. 1. A cross section of a typical planar discharge cell con-
direction. Such systems with high-ohmic cathode have beegging of a metal anode, a gas layer, a high-ohmic cathode, and
intensely investigated in the last dec4@e15| and a number  4nother metal contaciea(t), ec(x,y,t), andeg(t) are potentials at

of exciting structures were observed and interpreted within 8=¢, z=d, andz=d+d.. E andE, denote the axial electric field,
qualitative approach using current tools from the field ofand j, are the current densities. Drift velocities of particles are
nonlinear dynamics and pattern formatidé]. However, so  schematically shown at the top. We take nitrogen pat1.33

far no quantitative approach has been put forward and therg 10* Pa andd=d,=0.1 cm as an example. A typical semiconduc-
was no basis for comparison to experiment. The present paer cathode has specific resistivity=10" 2 cm and dielectric con-
per is dedicated to this problem. stante=10.
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of the supply voltage the system is prepared to operate near E, l,-0=0, E, |4q=V,dU,
to the breakdown point, that is, the voltage applied to the gas i )
almost equals the Townsend breakdown voltage In this ~ WhereV,=(d,,d,). The first(anodg equation holds for any
mode of operation the current is negligible and is often lo-metal electrode and the secofwhthod¢ follows from the
calized in several narrow channels caused by inhomogenélefinition of the overvoltage. Due to the small width of the
ities of the system. The channels serve as seed current flugischarge cell, the intrinsic radial field can be approximated
tuations for the breakdown. The supply voltage is ther@S
suddenly increased to a larger valdg such that 7
Us—Up < Uy, (1) Er=gvidy. ®
In this situation parameters of the system, like diffusion andhe approximation can be also justified by a systematic cal-
mobility coefficients for electrons and ions, are not changedulation of the electric field. As ensured k) and(3), both
whereby the ionization coefficient varies considerably due taxial and radial distortion o, are small. As a result the
the strong dependence on the electric field. Note, that imbsolute value of the electric field is always approximated as
many experiments with the high-ohmic barrier the differenceg, + SE.
Us—Uy is several tens of volts, wheredk, is several hun- In what follows we derive an equation for the current
dreds of volts[15,19. Another example is a direct experi- density in the gas gap. The calculation results in a nonlinear
mental measurement af,, whereU,—U, can approach one diffusion equation, however, this equation contadis For
volt [20]. the interplay between the current and the overvoltage we
Breakdown in a system like Fig. 1 transfers it to a statethen derive an additional equation considering Laplace equa-
that is assumed to be in the Townsend mode. In the case thébn for the potential and boundary conditions for the electric
the current density is uniform, it is determined by field. By doing this a closed system of equations for the
U.—U current density and the overvoltage is obtained. We demon-
S—b, (2) strate that breakdown occurs in the form of shocklike ioniza-
pdc tion fronts that we investigate in detail. The results are finally

wherep is the specific resistivity of the high ohmic barrier. SUmmarized and discussed.
The value ofj, is assumed to be small enough in order to

i=Jo=

neglect spa_ce-charge_ effects. Typicajly<10* A/cm? if Il. THE GAS GAP
the system is on the right-hand branch of the Paschen curve
[1], and jo<102 A/cm? for the left-hand branchi21]. In In this section we discuss the gas gap where electrons and

this way the discharge is operated in the Townsend modguositively charged particles move in opposite direction as
The breakdown can be considered as a transition between tigescribed by the applied electric field. Only one positive
states withj=0 andj=j,. Our goal is to investigate such a charge carrier specigons) is considered. The drift velocity
transition. of electrons and ions is determined by mobilitigsg,
Inequality (1) ensures that t_he voltage drdpg,<=¢a Vo=—bE andv,=bE.
- ¢c at the gas gap is not very different from the breakdown
value. Consequently it is natural to present the gap voltage aehere is also a stochastic particle flux described by the dif-
_ _ fusion coefficientsD,;. Both mobility and diffusion coeffi-

Ugas=Up+ Uy, D, U < Uy, cients depend on the local electric field. However, in the
where 8U is referred to aghe overvoltage The essential Townsend mode they can be assumed to be constant deter-
difference from the familiar case of metal electrodes is thatmined byE,. The particle densities of electrong and ions
in the case of Fig. 1 botlzc and U can depend on position. n; are governed by two continuity equations,
The maximal possible overvoltage is achieved if the whole B
supply voltage is applied to the gas gap, i.e., e+ V (NeVei = Dei V Nej) = S

SU(x,y,t) < U= Uy, 3) WhelfeSe’i _is the_ionization source term. The equations can be
rewritten in a simpler form
where the right-hand side is a predetermined quantity, )
whereas the left-hand side is a dynamical variable to be dNej T Vei ¥V Nej = DeiVNe = S,
found. o as the space-charge effect is negligible in the Townsend
The major part of the gas electric fiellis directed par-  0de.

allel to thez axis. This axial field component can be pre- | ¢t ys undertake the following simplifications. We use a
sented as local field approximation and write

d
E,=E,+ 6E, f SE(x,y,z,t)dz= U, (4) S=S = a(E)nge,
0 where Townsend parametefE) describes ionization rate
where E,=U,/d is the breakdown field. The radial electric andE=E,+ 6E. Even if very small,6E should be taken into

field E, can be exactly calculated at the gas-electrode interaccount here because is a sharp function of the electric
faces field. Note, that the local field approximation is not a good
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model in the case that the electric field is subject to drastidepends on all space-time variables huhis dependence is
changes, e.g., in the cathode fall. In the Townsend modessumed to be slow on the time scaleand space scale.
however, the field is practically constant and therefore thélhe electric current density is approximated as

simple local ionization term is justified. Farther, the ion dif- )

fusion is completely neglected. We also neglect the electron J = qbEyno, (12
diffusion in the axial directiorisee, e.g., Re{22]). In con- s parallel to thez axis, and depends on all variables auin
trast to this, the radial diffusion of electrons is taken '”toélz) g is the elementary charge.

account. We also keep the radial drift terms for electrons and |t ig appropriate to assume thag is the true anode elec-

ions considering them as a small perturbation with respect tgqp, density, so that a possible distortion(6f disappears at
the axial drift flux. Finally, we are interested in processes that_g a possible distortion of10) disappears at the anode as

are slower than the typical ion travel time well, because of the anode boundary conditigh In what
d follows a dynamical equation famy(x,y,t) will be found as
7 a compatibility condition of the next step of the perturbation

bi, expansion. It will then be transformed to a more physical
and consequently,n; is taken into account as a small pertur- equation for the axial current, as given @2).
bation. The dependence pf on time is eliminated adiabati-
cally by settings;n, to zero. B. The perturbation of the Townsend solution
Altogether, the continuity equations for electrons and ions . . .
9 yed If one takes the right-hand sides of E@6) and (7) into

are rewritten as _
account, Eqs(9) and(10) are not exact solutions. Therefore
[bed,ne + bea(E)NG]E, = —b,E |V n.—DV2n,, (6)  we perform the next step of the perturbation theory and write
the particle densities as follows:

[bi&zni - bea'(E)ne] E,=-BE V. .n-am, (7) Ne= e—abZnO + 0N,
where Vi is the radial part of the Laplace operator. The
left-hand sides of Eq46) and(7) provides us with the clas- be ~
sical (Townsendl discharge solution; the right-hand side de- n; = E(l —e )Ny + on;,
scribes its perturbation due to radial drift, radial electron dif- :
fusion, and ion inertia. where the perturbationén,; originate from the radial drift,

Of course, appropriate boundary conditions must be imelectron diffusion, and ion inertia. These densities must be
posed on the electrodes. In this context we remember that treubstituted into Eqg6) and(7). As explained above, we can
diffusion in the axial direction is completely ignored, i.e., the assumesn,;=0 atz=0, but not az=d. A compatibility con-
boundary conditions can be taken in the Townsend fitin  dition for the resulting equations set is a desired dynamical

equation forng.
nl,.o=0 and Nel  _ yﬁ, (8) Itis profitable to rewriteng; in the equivalent form that is
Mlzdg "De suggested by the structure of the Townsend solution. Without

where the secondary emission coefficigns the ratio of the loss of generality we introdude,; instead ofén,; so that

secondary electron flux from the cathode and the primary ion N, = & (N + i) (13
flux to the cathode. e o ,

Be.
A. Townsend solution n = ﬁ(l —e ) (ng+ 1) + 1, (14)
|

Our first concern is to reproduce the classical solution for ~ _ e : . .
the Townsend dischardé]. To this end we ignore the right- wherene, =0 atz=0. The variablal, describes the distortion
hand sides of Eqg6) and (7) and replaceE by the electric of ng whereasn; is a “non-Townsend” part of the perturba-

breakdown fieldg,,. The expressions for the electron and ion.tion' Equ.ation(13) arl1d' the (_alectric field4) and (5) are now
densities are inserted into(6). Omitting high-order terms we arrive at the

equation for the perturbed electron density

Ne = € %™, (9) U
) ORe=— zVLnOVLU—b “NV2No— a{ngdE,  (15)
n = E'_a(l —e )Ny, (10)
I

where ) =a’(Ep) comes from the Taylor expansion of the
where a,=a(Ep). The well-known additional restriction ionization coefficient. The parameter
yew'-1)=1 (12) e

beEb

results from the cathode boundary condition and implicitly
determiness,,. The parameten, is a constant of integration is recognized as the electron diffusion length. We now inte-
and can be interpreted as the electron density at the angde; grate(15) from z=0 to z=d and arrive at the equation
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. d? ) )
ne|2:d == EVLnovLU_b - )\edVino - abnoéU, (16)

which together with(13) determinessn, at the cathode.
In a similar manner we substituté4) into (7) to get the
following equation forfn;:

b _ .
b—'ﬂzni =(1- e“"tJZ)()\eVzL Ng— g&%) + oy SE.
e
Integration over B<z<<d gives the result
b

i~ 1- e_abd 2 ’
n; =|1-———](\dV* Ny~ 7idNp) + NV
R P apd
17)

together with Egs(14) and(16) determiningdn; at the cath-
ode. Note, that botlén, and én, containV | 6U; the term is

specific for our problem and disappears for the metal electycior

trodes.

C. Governing equation

The axial electric field, as given bi}), contains the un-

known perturbatiordE. That is the reason for deriving equa-

tions only for then; at z=d. This information is however
sufficient to determine,. We substituté13) and(14) in the
cathode boundary conditiof8) to get T|,—4q=0, i.e., the

“non-Townsend” parfy; must disappear at the cathode. Equa-

tion (17) reduces to the compatibility condition
TidNo = \edV7 Ny + CL iU, (18)

which is the desired equation fop. The familiar inequality

y<<1 was not used in the derivation, nevertheless the nu-

merical factor
1+
C,= -1 z
1-In(A+1y+y

is of order unity for all reasonablg. Equation(18) is not
closed, as it containgU. It is of interest to note that the
terms containingv , 8U cancel so that Eq(18) is formally
similar to that for the metal electrod¢®3-25, where the

overvoltage is compensated by diffusion and the radial drift

flux is not important. The difference is that in our was is
a dynamical variable in aartial differential equation to be

PHYSICAL REVIEW E 71, 066404(2005

To account for the nonlinearity term let us introduce a
multiplication coefficient

m= V{EXlﬂ(f: a(E)dZ> - 1}

so thatj(t+7) = uj(t) in accordance with the physical sense
of «(E) (see, e.g., Ref.28]). In the case of slow evolution
the Taylor expansion yields

7idj () = (w = (1), (19

where the self-sustain conditigm=1 is achieved folE=E,
and is equivalent t¢11). For small overvoltage the multipli-
cation coefficient is

(Ep + OE) = (e — 1) ~ 1 + o 8

and the nonlinear term i(l8) is restored from(19) up to
-
We stress thatl18) is applicable to slow(i.e., 76,<1)
processes, correspondingly

aldU <1 (20)

that imposes a restriction ods—U,. We use the standard
approximation for the Townsend coefficigi|

a(E) = Ape BPE,

where A and B are gas-dependent parametgrsheing the
pressure. The value’ takes its maximal value at the inflec-
tion point (whereEzéBp) and quickly decreases with either
increase or decrease of the electric field, the maximal value
of 86U is Ug—U,,. Inequality (20) is ensured if

e’B
US_Ub< ——

4A 2

where the right-hand side varies from 20 to 60 volts for
different gases. Conditiof21) refines our original assump-
tion (1).

Finally we rewrite(18) for the axial electric current den-

’

3 =DaVij+Cy——] (22

7

derived from the consideration of the high-ohmic barrier. Be-as determined byl12), and turn to the consideration of the

fore doing so let us discusdl8) in more details. It is a

high-ohmic barrier.

nonlinear diffusion equation, the corresponding diffusion pa-

rameter

ANd b
Da: - = Deb_
7 e

Ill. THE HIGH-OHMIC BARRIER

In this section we derive the missing equation for the
overvoltagesU(x,y,t), which will turn out to be a linear

is recognized as the ambipolar diffusion coefficient. This faciPartial differential equation. To begin with we note that the
is not unexpected26,27 because the spatial spreading of cOmbination ejedE,+j, must be continuous at the gas-
particles is due to electron diffusion, whereas the typical mi<cathode interface so that

croscopic time scale for the current is determined by the ion

travel time. Equatior(18) has two uniform stationary solu-
tions either withny=0 (zero current or with SU=0 andn,
=const, the latter results from the equilibrationj ¢£q. (12)]

andjo [Eqg. (2)].

(€00tE;+ ) =d-0 = (€0€GE, + j) =d+0 (23

where the Townsend approximation for the axial electric cur-
rent densityj in the gas is given by12), j. is the axial
current density in the cathode, aads the cathode dielectric
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constant. We consider the cathode as a simple linear conduc- U d_,

tor with the specific resistivity, so thatj,=E,/p. Now, the Ellra-0=Ep+ i §V¢5U

problem is reduced to the calculation of the axial electric

field E,. For the special case of spatially uniford(t) the  for the boundary value of the electric field.

field equals(U,+6U)/d in the gas andUs—U,—8U)/d; in The electric field in the cathode is a solution of a similar
the cathode. Inserting both fields {®3) we arrive at the problem,

standard approximatiof25] )
V%=0, ¢lza=¢c, @lzara,= ¢8,

Us—Up-8U . .
cd;0U = . i (24)  wheregpc—pg=Us—U,—8U. It is easy to demonstrate that
pUc
. . Us_ Ub -ou dc 2
where the combination E,l,mgi0= B I EVL&U'
C
o= S0 &0 (25) We finally insert the electric fields in the boundary condi-
d d; tion (23), omit small terms, and arrive at
is the cell capacity per unit area. It is also profitable to intro- _ 5 Us-Up,-68U |
duce characteristic cathode time 90U =DV U + 7 T (26)
7= pdec, which is the desired extension of E@4) for the overvolt-

L. . . . age. Formally the combination
which is recognized as thRC time of the corresponding

circuit. The last term in Eq(25) usually dominatesy, re- d?
duces then taep, i.e., to the Maxwell time of cathode ma- Dc= 37
terial. The interplay ofr. and the ion travel time; plays an ¢
important role in what follows. can be considered as a diffusion coefficient; the opeMﬁor

Equation(24) is only the first approximation to the final originates however from the radial component of the electric
equation for the overvoltage because the nonuniformity ofield and does not describe any real diffusion.

S8U was completely ignored. To take this nonuniformity into  Equations(22) and(26) provide a self-consistent descrip-
account we need an accurate solution of the Laplace equatidion of the physical system depicted in Fig. 1. Their solutions
with the corresponding boundary conditions. It can be giverare investigated in the next section.

explicitly due to the small width of the discharge cell. Let us
start with the gas region.

Note, that the electric potential at the metal contag{st
z=0 andgg atz=d+d, (see Fig. 1 can depend only on time, In this section we investigaté22) and (26) and discuss
the differenceU =~ g is fixed and equal to the supply the physical meaning of the corresponding solutions. Let us
voltage. On the contrary, the potentigd at the gas-cathode introduce normalized variables,
interface atz=d depends on all variables, bat To get the
electric field in gas we must solve the following problem:

IV. DISCUSSION OF THE REDUCED SYSTEM

u:_J— andv = ,
Jo Us—Up

V2e=0, ¢l0=¢n ¢lma=¢c, —
and the dimensionless overvoltage parameter,

where the radial part of the Laplace operator is a small per- B ,
turbation to the axial part. A corresponding solution is ob- $=Cyap(Us— Up) < 1.

tained as a perturbation expansion in the paraméi®  p,ametes shall be small in accordance wit0). We now

whereR is the characteristic transversal space scale of thgy,jte (22) and(26) as a two-component reaction-diffusion
radial structure in question. The electric potential in the ga%ystem

reads as
S g f rou=dViu+u, (27

6d Vi oc

z
¢=ea~ 4(ea=¢c) -
v =d2Viu+1-u-v. (28)

where the terms~d*/R* are ignored. We insertta~¢c  The system is our main result. It is somewhat similar to
=Up*4U in the last equation and come to E@) for the  giterent qualitative models developed by several authors,

radial electric field, whereas the axial field is given by but is quantitative, i.e., the characteristic time scales
_UptdU 3=, 7
E.= d 6 Viou Tu=g and 7, = 7,
in accordance withi4), i.e., we have and the diffusion lengths
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TABLE I. Typical relaxation times and diffusion lengths for the 1 - (kd,)?
system(27) and(28). We assumed=0.02 andUs-U,=10V, for r,=
the other parameters of the discharge cell see Fig. 1.

1+ (kd,)?
andFZ:——( d) ,

Tu Ty

where the first root indicates an instability on the time scale
Ty d, T d, 7. If 7,<r,, the instability develops immediately after in-
crease of the supply voltage and the overvoltage state is not
really achieved. The instability corresponds to the break-
down and brings the system to the Townsend mode of opera-
tion. The latter is asymptotically stable. Indeed, we start from

41x10%s 1.7x102cm  9.7x10%s  5.7x102%cm

d.= )‘_ed andd :d_£ the Townsend state, add a small perturbationl+du,v
u s NCY =0+46v proportional to exfikx+1I't), and arrive at the disper-
sion relation

can be quantitatively calculated for any system in question. 1 1 1
For instance, let us consider the discharge cell parametersl' + (— +D, k2 + Duk2>F +—+ (— + kaz) DK?>=0,
from Fig. 1. The coefficientd andB, particle mobilities, and T Ty \Ty

diffusion coefficients for nitrogen can be found in REE].  where the diffusion coefficients

We take y=0.02 and obtain the breakdown voltag,

=885 V. The right-hand side of Eq21) is 58 V, so that we D = d_ﬁ -D. andD = d_5 -D
assume Ug=895V that results in s=0.19 and j, g R v

=10° A/cm?. The corresponding set of parameters for the ) »
system(27) and(28) is given in Table I. One can check that Re<<0 for all k. If in addition ImI"

In general, the system dynamics is determined by twg” 0: the perturbation oscillates in space and time and can be
dimensionless ratios,/ 7, andd,/d,, both quantities are of interpreted as a decaylnginlzatlon wave This happens if
order unity in our example. Of course, either large or small’u<47,- The frequencyw=ImT" of such a wave is deter-
ratios are also possible. In contrast to this, botandv are ~ Mined by the relation
always of order unity due to the normalization. The diffusion 1 (1 7, ) . D,-D,

lengthsd, andd, shall be smaller than the radial space scale W= — |+ =2k, (29
R, nonlinearity is hence superior to diffusion. Typically, most 4, 2,

of the physical space is occupied with homogeneous statiofwhere we took into account that the basic syst@m and
ary solutions of Eqs(27) and (28). The diffusion is only ~ (28) is valid only for the long-wave perturbations with
important in transition regions where spatial dependence of (kd,)2<1 and(kd,)?<1. Note, that the group velocity of the

TuTy

oruv is essential, e.g., in the case of ionization fronts. jonization waves can be either parallel or opposite to the
Let us now systematically discuss solutions of the basigjrection of the phase velocity depending on interplapgf
system(27) and (28). andD,.
We stress, that the above solutions correspond to a small
A. Stationary states and ionization waves perturbation of the stationary states, i.e., to linear waves.

Essentially nonlinear solutions appear if we consider a dy-
The system(27) and (28) has two stationary homoge- namical transition from the overvoltage state to the

neous equilibrium solutions. The solutign=0,0=1) corre-  Townsend state. The details of such a transition can be sur-
sponds to vanishing current and peak overvoltage, it is reprisingly different depending on the system parameters.
ferred to as theovervoltage stateThe second solutioifu ~ These solutions are investigated below.
=1,0=0) describes a stationarfownsend stateAs ex-
plained in the introduction, the system is assumed to be near
the breakdown point when the supply voltage is suddenly
increased to a valu&,>Uy,. A corresponding initial condi- An important class of solutions of Eq&7) and (28) is
tion for Egs.(27) and(28) is u=v=0. An initial stage of the generated if the discharge is uniform in space, i.e.,
system evolution is described by the exact partial solution :
with u=0 and Tl =, (30)

B. Uniform solutions

0w =d?V2u+1-v, v=1-u-v, (31

so that the basic system can be replaced by an equivalent
which physically corresponds to the condenser charging. Of€cond order equation
the time scaler, the system reaches the overvoltage state.
The latter, of course, is unstable. Assuming a small harmonic
perturbation of the overvoltage state0+du,v=1+dv with where the dot denotes derivation with respect to time. The
the perturbation terms-exp(ikx+I't), we reduce Eqs(27) equation describes a uniform transition from the overvoltage
and (28) to a dispersion relation foF. There are two real state to the Townsend state. A somewhat similar phenomeno-
roots logical system was originally suggested in Ref9].

T + (1= T0)0 +v —0?=0,
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arrive at a closed adiabatic equation for the electric current
1
- Us = U =d2V2u+u(l -u), (32)
Uy which is recognized as the Fisher equation. A lot of informa-
10 20 30 10 20 30 tion is available for this equatiof32], and we can easily
(a) t/r, (b) /7y draw various conclusions with respect to the breakdown un-
der the above defined conditions. First of all, a small local
1.5 current fluctuation leads to an exponential increase of the
5 1 g current. On thg time scalgu the current dens_ity'~j9'is
= ] nearby the original fluctuation. Further on, the instability de-
0.5 0.5 velops in a nonlinear way, a monotonic ionization front
050 30 T 5030 propagates away from the initial fluctuation. Far away from
the fluctuation point the front is practically one dimensional,
© t/ty (d) t/7y

stable, and has a special forFu(x—-ct), whereu(-«)=1
FIG. 2. Numerical results for temporal behaviorwtj/j, for ~ andu(+e)=0. If the initial fluctuation is well localizedsee,

uniform breakdown[Egs. (30) and (31)]. Initial conditions are €.9., Ref[33]) the front velocity equals

u(0)=0.05 anav(0)=0.0, i.e., the initial current fluctuation is 5% of

the final value(a) Applied voltage, arbitrary unitgh) =,/ 7,=5, no

oscillations;(c) 7,/7,=1, the current profile is nonmonotoni() T T

7./ 7,=0.2, damping current oscillations.

_2dy_2\Dere

VC,af(Us=Uy), (33)

where 7,=d/(b.Ep) is the electron travel time. For the non-
localized initial conditions the front velocity exceedsThe
latter is proportional to the square root of the overvoltage,
i.e., the front propagation differs from the familiar expansion
of the current spot in the glow discharge md@é], where
the velocity is proportional to the overvoltage. During the
‘"i'gnition the radius of the current spot increases the total

For 7,>4r, the current increases monotonically. As
above, if either the circuit capacity or resistivity are large
enough andr,<4r, the discharge current is subject to
damped oscillations. Ifr,< 7, the correspondingQ-factor
Q=\r,/7, achieves large values and the oscillations have

well-defined frequency defined by EQ9) for k=0. How- o et js— 12, Finally the uniform state withi=j, is estab-

ever,_the oscillations inevitably decay on the: time sq@lg lished on the whole electrodes area, except for plasma edges
Physically they correspond to dumped ?ranS|e.nt OSCIIIamn%vhere boundary conditions affect final current distribution.
to the steady state and should not be mixed with the subnor-

mal discharge oscillations between Townsend and glow D. lonization fronts
modes[25,30,3]. These undamped oscillations are caused

by space-charge effect in the glow mode that is out of scope The preceding section explicitly describes front properties
of this paper. (e.g., form and stabilityand provides an analytical expres-

Figure 2 shows the electric current behavior for differentSion for the lowest front velogity. This is possible because of
values ofr,/7,. It should be noted, that the uniform break- the simple character pf the Fisher e_quatlon. The general case
down requires homogeneous initial perturbatige., uni-  ©f EAS-(27) and(28) is more complicated, and we refer to

form distribution of seed electronthat is highly unlikely. A~ the numerical solutions. Fortunately, our basic system is

more realistic picture corresponds to a small initial currenfMuch more easy to solve than the original discharge &)s.
fluctuation induced locally in space by a randomly localized@"d (7). In particular, because of the analytical expressions

group of seed electrons or by a local inhomogeneity of elect9) and(10), we calculate irx,y,t) space and obtain infor-
trodes. It is then necessary to consider nonuniform solutiongation in the whole three-dimension@D) physical space.

of Egs.(27) and (28). Ina typical run one can eaS|_Iy cover a macroscoplgal time
interval (e.g., 1§ ion travel time$. In contrast to this, a
direct numerical solution of the original 3D equatidé$and

(7) for t> 7 is a much more complicated problem.

The nonuniform breakdown, as a possible solution of Eqs. Quialitatively, the behavior of the general solution is the
(27) and(28), occurs in the form ofonization fronts Such a  same as for the Fisher case. An initial current perturbation
front is a transition wave between unstable and stable systemhanges to a stable ionization front. The latter propagates
states that propagates along the electrodes. away from the initial perturbation and quickly changes to a

We start with a simple special case where the basic sysjuasi-one-dimensional front. If the initial fluctuation is well
tem (27) and(28) is reduced to the classical Fisher equationlocalized[33], front form and velocity are uniquely deter-
[32]. Let us assume that, < 7, so that the time derivative in mined by 7, , andd, ,, otherwise the velocity is larger and
(28) can be ignored, i.e., the cathode current immediateldepends on fluctuation. The structure at the transition region
follows the gas current. This happens, if the Maxwell time ofof the front is more complicated than in the case of the
the high ohmic barrier is not too large. We also assume thaFisher equation. In addition to monotonic fronts, strongly
d,<d,, i.e., the current diffusion dominates the formal dif- oscillating fronts can be observed. An example of this case is
fusion of the overvoltage. The latter is then directly deter-shown in Fig. 3 where the system parameters from Table |
mined from(28) v=1-u and can be inserted int@7). We  were used.

C. Fisher equation
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ru=d2V2u+ o, (34

R 70w =1-(U)-v, (39

] 3. where the first equation is identical to E&7), whereas the
sl El | , overvoltage is uniformv=v(t) and subject to the ordinary
differential equation. Here

1
(u)zéffu(x,y,t)dxdy

is the space-averaged value of the current densitysasdhe

“ 10 area of the electrodes. One immediate observation is that

(- 4 uniform solutions of Eqs(34) and(35) are identical to those

S0 ' D" 20 N of Egs. (27) and (28). Nonuniform solutions are however
"""""" R different owing to the absence of the overvoltage diffusion

50 !
g term and, more importantly, slow changes (of. A seed

current fluctuations develops in a current filament with a
considerably larger amplitude as compared to those in Fig. 4.

ditions and the system parameters from Table | were Used. WeNelther fronts(i.e., well distinguished stationary states and a

FIG. 3. Numerical results for spatial behavior ofj/j, for
ionization front[Eqgs.(27) and(28)]. The Neumann boundary con-

started fromu=v=0 and added a small fluctuation ofat the ori- moving transition region b?tween thgmor _spatial oscilla-
gin. The fluctuation changes to a front that spreads out with a contions ared orl:])served. -cli—heb flflameﬂt I_?OKS “ked 3' ber:l—shaped
stant velocity~3x 10* cm/s. The velocity depends on fluctuation curve an that expands before the Townsend discharge state

but does not change with time or with refining of the numerics. is achieved.

Four typical examples of front cross sections are shown in
Fig. 4 for different parameters of the system. More compli- V. CONCLUSIONS
cated scenarios appear if there is more than one initial fluc-
tuation. Several fronts are produced, they collide with each We investigated electric breakdown and transition to the
other and merge in the course of the collision processes. Atownsend discharge mode for a gaseous plane-parallel dis-
the end, however, we always have only one front that transeharge cell. The discharge is stabilized byliatributedex-
forms the system in the uniform Townsend state. ternal resistor, e.g., a laterally extended high-ohmic cathode.

It is of interest to compare our results to those for metalSuch a system exhibits a large variety of self-organized pat-
electrodes. Considering the same discharge cell, except feerns and is a good candidate for a fundamental investigation
metal electrodes and an equivalent external resistivity, onef general properties of pattern formation in nonlinear spa-
can derive the following system: tially extended dissipative systems. In contrast to the good
qualitative understanding of experimentally observed pat-
1 1 terns, the system with the high-ohmic cathode was never
investigated quantitatively on the basis of gas-discharge spe-
20.5 30.5 cific transport equations. In a first step we developed such a
description on the base of classiahlft-diffusion discharge
model in the Townsend mode of operation.

The key problem is that the experimental phenomena are
(@) x/dy (o) x/dy observed on a macroscopic time scaiéthe order of 10° s

or longey, whereas the drift-diffusion approximation is on a

30 60 90 30 60 90

3 3 microscopic time scalée.g., the electron travel time which is
23 23 =4x109s for the system in Fig.)1 A direct numerical
715 915 solution of the full 3D drift-diffusion equations on macro-
o.% 0 % scopical times is practically impossible and a reduction of

the drift-diffusion model is desirable. Such a reduction is
30 60 90 30 60 90 . . -
© x/d, @ x/d, d_eveloped in the present paper using the fact that the axial
dimension of the discharge cell in question is small as com-
FIG. 4. Numerical result§Egs. (27) and (28)] for the form of pared to the radial dlme|j5|on. Two_-scale approach alloyvs
the ionization fronts for different system parametd®s. 7,/ 7,=5 _then to separate off the axial and radial effects. The reduction
andd,/d,=4, i.e., both time and space scales are determined by th® possible if the source voltage exceeds the breakdown volt-
gas;(b) 7,/ 7,=5 andd,/d,=0.25, the cathode is adiabatic and dif- age to only a small exten€q. (21)] that ensures the slow
fusion in the gas is smallg) 7,/ 7,=0.2 andd,/d,=4, the discharge ~ €volution of the system.

is adiabatic and formal diffusion in the cathode is smél); 7,/ 7, The drift-diffusion equations are simplified to a two-
=0.2 anadd,/d,=0.25, both time and space scales are determined bgomponenteaction-diffusionsystem, that incorporates only
the cathode. radial coordinates and slow time evolution. All numerical
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coefficients in our system can be quantitatively calculatedior is specific for the distributed external resistor and does
that is, our predictions can be compared with experimentahot occur for ordinary metal electrodes.

data. For instance, the solution displayed in Fig. 3 should be In closing, the present approach is a first step in the quan-
observed for the discharge cell parameters from Fig. 1. Théitative description of pattern formation phenomena in planar
derived set of Eqs(27) and (28) is much better suited for dc gas-discharge systems as cited above. In a second step the
a..na.ly!:ical and nume.rical inVeSti.gationS' than the fu” dl’if‘t- treatment must be extended from the Townsend mode of Op_
diffusion set of equations. In particular, in Eq87) and(28)  eration to the glow discharge mode where the patterns are
the solution in full 3D space must be implemented numeri-ycqa)ly observed. Also in this case a relatively simple reac-
cally only for two space coordinates because the axial depenyyn giffusion system, but with a cubic nonlinearity, can be

dence is taken into account analytically. deri : P
. ha . erived. Corresponding work is in progress.
The most important nontrivial solutions of Eq27) and P 9 prog

(28) are those for nonlinear ionization fronts, which propa-

gate along the discharge plane away from the point of igni- ACKNOWLEDGMENTS
tion. In some special cases the lowest front velocity can be
calculated analyticallyEq. (33)], in general the velocity de- The authors gratefully acknowledge useful discussions

pends on triggering fluctuation and one must find a numeriwith M. S. Benilov, Y. P. Raizer, and L. D. Tsendin. The
cal solution. The form of the ionization front can be eitherauthors also thank Deutsche Forschungsgemeinschaft for fi-
monotonic or oscillatingFig. 4). Such an oscillating behav- nancial support.
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